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CAVITATING FLOWS THROUGH A CASCADE OF FLAT 
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SUMMARY 
The purpose of this research is to consider the flow through a cascade of bluff bodies, behind which there 
exist cavities, by using the free streamline theory. When the wake extends to infinity, both the free surface 
and the velocity on the free surface are unknown and the cavitation number cannot be specified arbitrarily. 
Given the geometry of the cascade, a numerical method is described in which we obtain the shape of the free 
surface and the cavitation number. We obtain the relationship between the contraction coefficient, 
cavitation number and drag coefficient. 
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1. INTRODUCTION 

The study of cavitation flows is an old subject. The first major step concerning the resistance of an 
object to a fluid flow was made over a century ago when Kirchhoff’ introduced an idealized 
inviscid flow model with free streamlines and employed the conformal mapping technique that 
had been developed by Helmholtz’ for treating two-dimensional jets formed by free streamlines. 
The following decades saw numerous extensions of the complex analysis method, e.g. Levi- 
C i ~ i t a , ~  Greenhill, etc. Compendia of this material are those of Birkhoff and Zarantonello? 
Gilbarg,s Woods,6 Gurevich’ and Milne-Thornson.* An extensive review of the literature may 
also be found in the exposition by Wu.’ 

The solutions of cavitating flow by employing complex analysis may be divided into two 
categories. One is the direct problem for the calculation of the cavitating flow passing an obstacle 
having a solid wall of a prescribed shape. The other method is the inverse problem that is 
described in an auxiliary plane. In an auxiliary plane the inverse problem is easier to solve than 
the direct problem because the inverse problem is completely determined. As we know, although 
the inverse problem is easier to solve, the shape of the obstacle cannot be specified in advance. 
The reason is that there exists a fundamental difficulty in that for a simple problem the analytic 
conformal mapping from the physical plane onto an auxiliary plane is unknown. We can specify a 
function in an auxiliary plane but the shape in the physical plane is unknown until the problem 
has been completely solved. It is just this feature that causes the difficulty for all except a few very 
simple cases. In the past the direct problem has been solved through the method for the inverse 
problem. When we consider the problem in an auxiliary plane in which a parametric variable is 
taken as an independent variable, the direct problem in the physical plane becomes indirect 
mathematically and the direct problem in mathematics become indirect in physics. For a direct 
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problem the use of an inverse method based on complex analysis is not as convenient as the finite 
element and finite boundary element methods. 

Despite this difficulty, many useful problems have been solved by the inverse method in which 
the angle between the x-axis and the tangent to the body surface is represented by a power series 
in the auxiliary variable. For example, Brodetsky" treated the problem of the symmetric 
cavitating flow about circular and elliptic cylinders. Larock and Street' ' expressed the angle of 
the obstacle as a piecewise linear parametric and also as a polynomial function. The final body 
profile found as the result of such a calculation cannot be determined in advance unless a very 
large number of terms in the series is used. 

Wu and Wang12 obtained a formal solution in terms of two non-linear integral equations and 
two unknown parameters entering the problem, the connection between the physical' and 
potential planes being completely implicit, through the kernels of the integral equations. These 
equations immediately provide the exact solution of a wide class of inverse problems, while the 
general direct problems are still difficult to solve exactly. The constants and the implicit relation 
were determined by a substitution method in a functional iteration. The convergence of the 
iteration is very sensitive to and dependent upon the choice of a basic flow or starting solution. 
FuruyaI3 used a double iteration loop coupled with Newton's method to improve the conver- 
gence. More recent contributions to the problem are by Vanden-Br~eck,'~ who solved the 
cavitating flow problem numerically by series truncation, and by Dias et d . l s  and Elcrat and 
Trefethen,' whose computations are based upon numerical techniques for a modified 
Schwartz-Christoffel mapping. 

The linearized free streamline theory of Tulin," for example, is a simple, direct but approxim- 
ate method for predicting forces on thin bodies. Unfortunately, this theory fails to calculate the 
pressure distribution correctly. 

The main objective of this paper is to exhibit how to directly solve the direct problems of 
cavitating flows passing a cascade by employing complex analysis. On the basis of the free 
streamline theory the problem is turned into a mixed boundary value problem and a Hilbert 
solution is obtained in the auxiliary plane. When we consider the problem in the physical plane, 
the inverse problem is transformed to a direct problem. When the wake extends to infinity and the 
condition far upstream and the geometry of the cascade are specified, the cavitation number is 
unknown. A numerical scheme is presented to obtain the cavitation number, the profile of the free 
surface, the contraction coefficient and the drag coefficient. The method can be applied to 
cavitating flows past arbitrarily curved obstacles and to free surface flows with surface tension. 

2. FORMULATION 

Consider the steady two-dimensional motion of a fluid flowing through a cascade with a grid of 
normal plates as shown in Figure 1. The fluid is assumed to be inviscid and of constant density p, 
the effects of gravitation and surface tension are neglected and potential flow solutions will be 
sought. Because of the symmetry of the flow field we need only consider the flow region which is 
contained between the axis of symmetry and ABCD (Figure 2) 

We introduce a co-ordinate system z=x+iy with origin at the separation point C. The free 
streamline CD is bounded on one side by a region of constant pressure p = p o .  The speed is u and 
the angle that the velocity vector forms with the positive x-axis will be defined as 8. Along the free 
surface CD we apply Bernoulli's equation in the form 

or 
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Figure 2. The transformation 

in which a = 2 ( p , - p , ) / p U z  is the cavitation number, U is the fluid speed upstream and q is the 
volumetric flux per unit breadth passing between the streamline ABCD and the axis of symmetry. 

The conservation of mass requires that q = HU = h,u,. Putting u,/U = H/hd ,  expression (2) 
yields 

d = (H/hd)’ - 1. (3) 
As we can see, when the condition upstream and the geometry of the plate are specified, the 
cavitation number and the velocity on the free surface are unknown because the profile of the free 
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surface is unknown. Defining the complex velocity potential W= cp + i+, where q5 is the velocity 
potential and + is the streamfunction, the complex velocity is 

d W/dz = ue- i9 (4) 

and the logarithm of the complex velocity is 

where z = In(u/U) and T, d W/dz and R will be analytic functions of W. Without loss of generality 
we may define the streamfunction $ = 0 to be the streamline ABCD and choose q5 = 0 to pass 
through the separation point C. The strip in the W-plane is mapped onto the upper half-plane of 
the auxiliary plane t by 

or W = f ( t ) =  -(q/n)In(-t). (6) t = -e-"W/g 

W, d W/dz and R will be analytical functions of t ,  and the boundary conditions on the real ?-axis 
of the t-plane are 

ImR(9) = 0, 4 < t B ,  

ImR(9) = - 4 2 ,  t B < V <  - 1 ,  
(7) 

ReR(9) = ~ ( 9 )  = In [ ,/(a+ l)], - 1 < 9 < 0, 

ImR(q) = 0, o<  9. 

The above is a mixed boundary value problem in the upper half-plane. By referring to the general 
solution of the Riemann-Hilbert problem'* we obtain the solution of 0 in the form 

where X (  t)  = ,/[ t (  t + l)] is a homogeneous solution and we choose a branch cut for X (  t)  such 
that 

x + (9) = JCV(9 + 111 ,  9 <  - 1 ,  

By taking the boundary value on the real axis 9 and separating the real and imaginary parts of R, 
one gets the velocity on the solid wall, 

or 

and the direction on the free surface, 
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The boundary condition at infinity is 

lim u( t )=  U .  
i +m 

Applying ( 1 1 )  to (13) we obtain 

2.1. Inverse problem 

For an inverse problem the solution is completely determined by the parameter t ,  or by the 
cavitation number. For example, when tB is specified, from (14) we get the cavitation number and 
from ( 1  1) we obtain the velocity on the free surface. The physical plane including the profiles of the 
solid wall and free surface is given by 

and the length 1 of plate can be obtained from 

Although the inverse problem is completely determined by the parameter t B  or by 0, we do not 
know the length of the plate until the problem is completely solved. 

2.2. Direct problem 

We now turn to the direct problem in which H, 1, U and pm are specified in advance. We will 
seek the profile of the free surface and the velocity on the plate for the calculation of the drag 
coefficient. From (3) we know that the cavitation number will be unknown owing to h, being 
unknown and the velocity on the free surface is also unknown from (2). 

Now let us consider the problem in the physical plane. In fact, for a direct problem the 
unknown functions are the velocity and potential function on the plate and the profile of the free 
surface and the velocity uo on the free surface. But all these functions can be taken as functions of 
the arc length s of the streamline, namely u(s), $(s) on the wall, x(s), y{s), O(s) on the free surface, 
and these functions are related by 

d4(s)/ds = u(s) on the wall and free surface, (17) 

on the free surface. 
dx(s)/ds = cos O(s) 
dy(s)/ds = sin O(s) 

In the physical plane we can rewrite (1 1 )  and (12) as 

where t ( s )  = -e-n+(s)/q, t(B) = -e-x+(B)/q, $(B) is the potential function at the point B and 
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from (17) and (18) we obtain the potential function 

q5( l )  = f u(s)ds on the free surface and the plate, 
0 

and the profile of the free surface is given by 

y(1) = sin O(s)ds. f 
The drag coefficient on the plate, normalized by the plate length, can now be defined by 

c, = 2P/pU21, (23) 

where P=f(p-po)dl is the force on the plate. Applying the Bernoulli equation on the free 
surface and the plate surface we can write .(23) as 

where u(s) is the velocity on the plate. The contraction coefficient is defined by 

3. NUMERICAL METHOD FOR THE DIRECT PROBLEM 

For a specified length of plate the nodes are distributed on the plate and free surface in a similar 
manner to that used in the finite element and boundary element methods. We briefly outline the 
procedure of the numerical method. 

(a) We assume a cavitation number no and obtain the velocity uz and the potential function 
r j 0 ( s )  on the free surface from (2) and (21) respectively. Assume the velocity uo(s) on the plate 
and obtain the potential function +O(s) from (21). 

(b) Putting q 5 O ( s )  into the right-hand sides of equations (19) and (20) we obtain the velocity ul(s) 
on the plate and the direction O'(s) on the free surface. 

(c) From (22) an approximate profile of the free surface is determined in addition to obtain- 
ing h:. 

(d) Putting h: into (3) yields a new cavitation number. 

These values are used as new approximations and the iterative procedure from step (b) to step (d) 
is repeated until 

where E~ and E~ are two preassigned small quantities. 

4. NUMERICAL RESULTS 

For a given geometry of the cascade, i.e. H / l ,  the mesh nodes are distributed according to the 
change of the velocity on the plate and the direction on the free surface. In the neighbourhood of 
the separation point C the change is rapid and therefore the intervals are smaller than elsewhere. 
On the plate 41 nodes are used and on the free surface 201 mesh nodes are distributed. The length 
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of the first interval on the plate from C is Asl = 0.0014581 and As, increases as As, = aAs,- 
(Q = 1.25) for n d 19 and decreases as As,, = As,,- 1 / ~  for n >, 20. The total length calculated for the 
free surface is 5 5 ( H -  l),  the length of the first interval from C is Asl = 0001 (H - 1 )  and As, 
increases as As, = bAs,- (b= 1.02495). We found that the initial approximation to the cavitation 
number go has little influence on the convergence; in the calculations presented here we set 
go = 15. All the numerical results presented in this paper were obtained using double-precision 
arithmetic on the Amdahl5860 computer at Leeds University and convergent results were always 
obtained using fewer than seven iterations and less than 10 s of CPU time. The results for the 
cavitation number, contraction coefficient, drag coefficient and u, /U are given in Table I and the 
computed profiles of the free surfaces are sketched in Figure 3. In all the calculations presented 
here we have found c1 = E~ = to be sufficiently small so that all the results presented are 
accurate to the number of decimals quoted. 

The results show that as the ratio HI1 decreases, the cavitation number c, relative velocity 
u, /U and drag coefficient increase but the contraction coefficient decreases. As H/l+l, i.e. 

Table I. Computed results 

~ 

11785 
32201 
22.057 

8.6368 
3.903 1 
2.6020 
1.9962 
1.6439 
1.4122 
1.247 3 
1.1234 
1.0266 

~~ 

0.61 145 
0.61197 
0.62477 
064427 
0.67742 
0.70254 
0.722 15 
073800 
0.75118 
076237 
0.77204 
078051 

~~ 
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1.4572 
1.4236 
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44182 
3.2205 
2.6676 
2.3418 
2.1383 
1.9896 
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Figure 3. Profiles of free surfaces 
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I/(H - 1 ) 3 0 0 ,  the contraction coefficient limits the results of flow from an infinite reservoir: 

I C  c c = - -  - 0.61 104. 
n + 2  

5. CONCLUSIONS 

In this paper we have described in detail the numerical method for the direct problem of the flow 
through a cascade of bluff bodies behind which there exist cavities whose wake is of infinite extent. 
For a direct problem the cavitation number, the velocity on the free surface and the profile of the 
free surface must be solved. Because we consider the problem in the physical plane, the inverse 
problem is transformed into a direct problem on which the shape of the obstacle may be specified 
in advance, so we avoid the difficulty that the physical plane is not explicitly provided until the 
whole problem is solved. As a result, the nodes may be distributed in a similar manner to that in 
the finite element and boundary element methods. The method used in this paper can be extended 
to calculate cavitating flows passing through arbitrarily shaped obstacles and, with a certain 
amount of modification, the method may be adapted to include the effects of surface tension. The 
calculation of cavitating flows passing arbitrarily curved obstacles under the action of surface 
tension will be reported in a later paper. In this paper we have used a boundary integral equation 
method. Although no comparative results exist for using finite difference and finite element 
methods, we would expect the present method to be superior to these methods since only the 
boundary of the solution domain requires discretization and convergent results were always 
obtained using less than seven iterations. 
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